Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Math Biosci Eng ; 20(1): 534-551, 2023 01.
Article in English | MEDLINE | ID: covidwho-2110350

ABSTRACT

We present a numerical implementation for a multilayer network to model the transmission of Covid-19 or other diseases with a similar transmission mechanism. The model incorporates different contact types between individuals (household, social and sporadic networks) and includes an SEIR type model for the transmission of the virus. The algorithm described in this paper includes the main ideas of the model used to give public health authorities an additional tool for the decision-making process in Costa Rica by simulating extensive possible scenarios and projections. We include two simulations: a study of the effect of restrictions on the transmission of the virus and a Costa Rica case study that was shared with the Costa Rican health authorities.


Subject(s)
COVID-19 , Pandemics , Humans , Costa Rica/epidemiology , COVID-19/epidemiology
2.
Epidemics ; 39: 100577, 2022 06.
Article in English | MEDLINE | ID: covidwho-1851043

ABSTRACT

Successful partnerships between researchers, experts, and public health authorities have been critical to navigate the challenges of the Covid-19 pandemic worldwide. In this collaboration, mathematical models have played a decisive role in informing public policy, with findings effectively translated into public health measures that have shaped the pandemic in Costa Rica. As a result of interdisciplinary and cross-institutional collaboration, we constructed a multilayer network model that incorporates a diverse contact structure for each individual. In July 2020, we used this model to test the effect of lifting restrictions on population mobility after a so-called "epidemiological fence" imposed to contain the country's first big wave of cases. Later, in August 2020, we used it to predict the effects of an open and close strategy (the Hammer and Dance). Scenarios constructed in July 2020 showed that lifting restrictions on population mobility after less than three weeks of epidemiological fence would produce a sharp increase in cases. Results from scenarios in August 2020 indicated that the Hammer and Dance strategy would only work with 50% of the population adhering to mobility restrictions. The development, evolution, and applications of a multilayer network model of Covid-19 in Costa Rica has guided decision-makers to anticipate implementing sanitary measures and contributed to gain valuable time to increase hospital capacity.


Subject(s)
COVID-19 , COVID-19/epidemiology , Costa Rica/epidemiology , Health Policy , Humans , Pandemics , Public Policy
3.
Sci Rep ; 12(1): 2279, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1684107

ABSTRACT

For countries starting to receive steady supplies of vaccines against SARS-CoV-2, the course of Covid-19 for the following months will be determined by the emergence of new variants and successful roll-out of vaccination campaigns. To anticipate this scenario, we used a multilayer network model developed to forecast the transmission dynamics of Covid-19 in Costa Rica, and to estimate the impact of the introduction of the Delta variant in the country, under two plausible vaccination scenarios, one sustaining Costa Rica's July 2021 vaccination pace of 30,000 doses per day and with high acceptance from the population and another with declining vaccination pace to 13,000 doses per day and with lower acceptance. Results suggest that the introduction and gradual dominance of the Delta variant would increase Covid-19 hospitalizations and ICU admissions by [Formula: see text] and [Formula: see text], respectively, from August 2021 to December 2021, depending on vaccine administration and acceptance. In the presence of the Delta variant, new Covid-19 hospitalizations and ICU admissions are estimated to increase around [Formula: see text] and [Formula: see text], respectively, in the same period if the vaccination pace drops. Our results can help decision-makers better prepare for the Covid-19 pandemic in the months to come.


Subject(s)
COVID-19 Vaccines , COVID-19/transmission , Models, Theoretical , SARS-CoV-2 , Vaccination , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Costa Rica/epidemiology , Forecasting , Humans , Middle Aged , Young Adult
4.
Life (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1554924

ABSTRACT

The rapid spread of the new SARS-CoV-2 virus triggered a global health crisis, disproportionately impacting people with pre-existing health conditions and particular demographic and socioeconomic characteristics. One of the main concerns of governments has been to avoid health systems becoming overwhelmed. For this reason, they have implemented a series of non-pharmaceutical measures to control the spread of the virus, with mass tests being one of the most effective controls. To date, public health officials continue to promote some of these measures, mainly due to delays in mass vaccination and the emergence of new virus strains. In this research, we studied the association between COVID-19 positivity rate and hospitalization rates at the county level in California using a mixed linear model. The analysis was performed in the three waves of confirmed COVID-19 cases registered in the state to September 2021. Our findings suggest that test positivity rate is consistently associated with hospitalization rates at the county level for all study waves. Demographic factors that seem to be related to higher hospitalization rates changed over time, as the profile of the pandemic impacted different fractions of the population in counties across California.

5.
Epidemiologia (Basel) ; 2(3): 294-304, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1325624

ABSTRACT

The aim of this paper is to infer the effects that change on human mobility had on the transmission dynamics during the first four months of the SARS-CoV-2 pandemic in Costa Rica, which could have played a role in delaying community transmission in the country. First, by using parametric and non-parametric change-point detection techniques, we were able to identify two different periods when the trend of daily new cases significantly changed. Second, we explored the association of these changes with data on population mobility. This also allowed us to estimate the lag between changes in human mobility and rates of daily new cases. The information was then used to establish an association between changes in population mobility and the sanitary measures adopted during the study period. Results showed that during the initial two months of the pandemic in Costa Rica, the implementation of sanitary measures and their impact on reducing human mobility translated to a mean reduction of 54% in the number of daily cases from the projected number, delaying community transmission.

SELECTION OF CITATIONS
SEARCH DETAIL